6.3 EXERCISE

SHORT ANSWER TYPE QUESTIONS

 Q1. A spherical ball of salt is dissolving in water in such a manner that the rate of decrease of the volume at any instant is proportional to the surface. Prove that the radius is decreasing at a constant rate.

Sol. Ball of salt is spherical

 \therefore Volume of ball, $V = \frac{4}{3}\pi r^3$, where $r =$ radius of the ball As per the question, $\frac{dV}{dt} \propto S$, where $S =$ surface area of the ball

 $\Rightarrow \frac{d}{dt} \left(\frac{4}{3} \pi r^3 \right) \approx 4 \pi r^2$ $\frac{d}{dt} \left(\frac{4}{3} \pi r^3 \right) \approx 4 \pi r^2$ [: S = $4 \pi r^2$] $\Rightarrow \frac{4}{3}\pi \cdot 3r^2 \cdot \frac{dr}{dt} \approx 4\pi r^2$ $r^2 \cdot \frac{dr}{dt} \propto 4\pi r$ \Rightarrow 4 $\pi r^2 \cdot \frac{dr}{dt} = K \cdot 4\pi r^2$ (K = Constant of proportionality) \Rightarrow $\frac{dr}{dt} = K \cdot \frac{4\pi r^2}{4\pi r^2}$ 4 $dr = \frac{4\pi r}{L}$ $\frac{dr}{dt} = K \cdot \frac{4\pi r}{4\pi r}$ \therefore $\frac{dr}{dt} = K \cdot 1 = K$

Hence, the radius of the ball is decreasing at constant rate.

Q2. If the area of a circle increases at a uniform rate, then prove that perimeter varies inversely as the radius.

Sol. We know that:

Area of circle, $A = \pi r^2$, where $r =$ radius of the circle. and perimeter = $2\pi r$ As per the question,

 $\frac{dA}{dt}$ = K, where K = constant \Rightarrow $\frac{d}{dt}(\pi r^2) = K \Rightarrow \pi \cdot 2r \cdot \frac{dr}{dt} = K$ $\ddot{\cdot}$ $\frac{dr}{dt} = \frac{K}{2\pi r}$...(1) Now Perimeter $c = 2\pi r$

Differentiating both sides w.r.t., *t*, we get

$$
\Rightarrow \frac{dc}{dt} = \frac{d}{dt}(2\pi r) \Rightarrow \frac{dc}{dt} = 2\pi \cdot \frac{dr}{dt}
$$

$$
\Rightarrow \frac{dc}{dt} = 2\pi \cdot \frac{K}{2\pi r} = \frac{K}{r}
$$
 [From (1)]

$$
\Rightarrow \frac{dc}{dt} \propto \frac{1}{r}
$$

Hence, the perimeter of the circle varies inversely as the radius of the circle.

Q3. A kite is moving horizontally at a height of 151.5 metres. If the speed of the kite is 10 m/s, how fast is the string being let out; when the kite is 250 m away from the boy who is flying the kite? The height of the boy is 1.5 m.

Sol. Given that height of the kite (*h*) = 151.5 m
\nSpeed of the kite(V) = 10 m/s
\nLet FD be the height of the kite
\nand AB be the height of the boy.
\nLet AF = x m
\n
$$
\therefore
$$
 BG = AF = x m
\nand $\frac{dx}{dt} = 10$ m/s
\nFrom the figure, we get that
\nGD = DF – GF ⇒ DF – AB
\n= (151.5 – 1.5) m = 150 m [∴ AB = GF]
\nNow in $\triangle BCD$,
\nBC² + GD² = BD²
\n⇒ $x^2 + (150)^2 = (250)^2$
\n⇒ $x^2 + 22500 = 62500$ ⇒ $x^2 = 62500 - 22500$
\n⇒ $x^2 = 40000$ ⇒ $x = 200$ m
\nLet initially the length of the string be y m
\n∴ In $\triangle BCD$
\nBC² + GD² = BD² ⇒ $x^2 + (150)^2 = y^2$
\nDifferentiating both sides w.r.t., *t*, we get
\n⇒ $2x \cdot \frac{dx}{dt} + 0 = 2y \cdot \frac{dy}{dt}$ [∴ $\frac{dx}{dt} = 10$ m/s]
\n⇒ $2 \times 200 \times 10 = 2 \times 250 \times \frac{dy}{dt}$
\n∴ $\frac{dy}{dt} = \frac{2 \times 200 \times 10}{2 \times 250} = 8$ m/s

Hence, the rate of change of the length of the string is 8 m/s.

٠B

- **Q4.** Two men A and B start with velocities V at the same time from the junction of two roads inclined at 45° to each other. If they travel by different roads, find the rate at which they are being separated.
- **Sol.** Let P be any point at which the two roads are inclined at an angle of 45°. Two men A and B are moving along the roads PA and PB respectively with the same speed 'V'.

Let A and B be their final positions such that $AB = y$

 \angle APB = 45° and they move with the same speed.

 \therefore \triangle APB is an isosceles triangle. Draw PQ \perp AB

$$
AB = y \quad \therefore \quad \text{AQ} = \frac{y}{2} \text{ and } \text{PA} = \text{PB} = x \text{ (let)}
$$
\n
$$
\angle \text{APQ} = \angle \text{BPQ} = \frac{45}{2} = 22\frac{1}{2} \text{°}
$$

[\therefore In an isosceles \triangle , the altitude drawn from the vertex, bisects the base]

Now in right $\triangle APO$,

 \Rightarrow

$$
\sin 22 \frac{1}{2} \circ = \frac{AQ}{AP}
$$

$$
\sin 22 \frac{1}{2} \circ = \frac{y}{x} = \frac{y}{2x} \implies y = 2x \cdot \sin 22 \frac{1}{2} \circ
$$

Differentiating both sides w.r.t, *t*, we get

$$
\frac{dy}{dt} = 2 \cdot \frac{dx}{dt} \cdot \sin 22 \frac{1}{2} \circ
$$
\n
$$
= 2 \cdot \sqrt{2} \cdot \sqrt{2 - \sqrt{2}} \quad \left[\because \sin 22 \frac{1}{2} \circ \frac{\sqrt{2 - \sqrt{2}}}{2} \right]
$$
\n
$$
= \sqrt{2 - \sqrt{2}} \quad \sqrt{2} \quad \text{m/s}
$$

Hence, the rate of their separation is $\sqrt{2} - \sqrt{2}$ V unit/s.

- **Q5.** Find an angle θ , $0 < \theta < \frac{\pi}{2}$, which increases twice as fast as its sine.
- **Sol.** As per the given condition,

$$
\frac{d\theta}{dt} = 2 \frac{d}{dt} (\sin \theta)
$$
\n
$$
\Rightarrow \qquad \frac{d\theta}{dt} = 2 \cos \theta \cdot \frac{d\theta}{dt} \qquad \Rightarrow 1 = 2 \cos \theta
$$
\n
$$
\therefore \qquad \cos \theta = \frac{1}{2} \qquad \Rightarrow \qquad \cos \theta = \cos \frac{\pi}{3} \qquad \Rightarrow \theta = \frac{\pi}{3}
$$
\nHence, the required angle is $\frac{\pi}{3}$.

Q6. Find the approximate value of $(1.999)^5$. **Sol.** $(1.999)^5 = (2 - 0.001)^5$ Let $x = 2$ and $\Delta x = -0.001$ Let $y = x^5$ Differentiating both sides w.r.t, *x*, we get $\frac{dy}{dx}$ = 5x⁴ = 5(2)⁴ = 80 Now $\Delta y = \left(\frac{dy}{dx}\right) \cdot \Delta x = 80 \cdot (-0.001) = -0.080$ \therefore $(1.999)^5 = y + \Delta y$ $= x^5 - 0.080 = (2)^5 - 0.080 = 32 - 0.080 = 31.92$ Hence, approximate value of $(1.999)^5$ is 31.92. **Q7.** Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively. **Sol.** Internal radius $r = 3$ cm and external radius $R = r + \Delta r = 3.0005$ cm \therefore $\Delta r = 3.0005 - 3 = 0.0005$ cm Let $y = r^3 \implies y + \Delta y = (r + \Delta r)^3 = R^3 = (3.0005)^3$...(*i*) Differentiating both sides w.r.t., *r*, we get $\frac{dy}{dr}$ = 3*r*² \therefore $\Delta y = \frac{dy}{dr} \times \Delta r = 3r^2 \times 0.0005$ $= 3 \times (3)^{2} \times 0.0005 = 27 \times 0.0005 = 0.0135$ \therefore (3.0005)³ = *y* + Δy [From eq. (*i*)] $=(3)^3 + 0.0135 = 27 + 0.0135 = 27.0135$ Volume of the shell $=$ $\frac{4}{3}\pi[R^3 - r^3]$ $=\frac{4}{3}\pi [27.0135 - 27] = \frac{4}{3}\pi \times 0.0135$ $= 4\pi \times 0.005 = 4 \times 3.14 \times 0.0045 = 0.018 \pi \text{ cm}^3$ Hence, the approximate volume of the metal in the shell is 0.018π cm³. **Q8.** A man, 2m tall, walks at the rate of $1\frac{2}{3}$ m/s towards a street light which is $5\frac{1}{3}$ m above the ground. At what rate is the tip of his shadow moving? At what rate is the length of the shadow

changing when he is $3\frac{1}{3}$ m from the base of the light?

Sol. Let AB is the height of street light post and CD is the height of the man such that

and $CE = y$ is the length of the shadow of the man at any instant. From the figure, we see that

$$
\triangle ABE \sim \triangle DCE
$$
 [by AAA Similarity]
laking ratio of their corresponding sides, we get

 \therefore Taking ratio of their corresponding sides, we get

Differentiating both sides w.r.t, *t*, we get

$$
\frac{dy}{dt} = 3 \cdot \frac{dx}{dt}
$$
\n
$$
\Rightarrow \quad \frac{dy}{dt} = \frac{3}{5} \cdot \frac{dx}{dt} \Rightarrow \frac{dy}{dt} = \frac{3}{5} \cdot \left(-1\frac{2}{3}\right) = \frac{3}{5} \cdot \left(-\frac{5}{3}\right)
$$
\n[\because man is moving in opposite direction]
\n $= -1$ m/s

Hence, the length of shadow is decreasing at the rate of 1 m/s. Now let $u = x + y$

(*u* = distance of the tip of shadow from the light post) Differentiating both sides w.r.t. *t*, we get

$$
\frac{du}{dt} = \frac{dx}{dt} + \frac{dy}{dt}
$$

= $\left(-1\frac{2}{3} - 1\right) = -\left(\frac{5}{3} + 1\right) = -\frac{8}{3} = -2\frac{2}{3}$ m/s

Hence, the tip of the shadow is moving at the rate of $2\frac{2}{3}$ m/s towards the light post and the length of shadow decreasing at the rate of 1 m/s.

- **Q9.** A swimming pool is to be drained for cleaning. If L represents the number of litres of water in the pool *t* seconds after the pool has been plugged off to drain and $L = 200(10 - t)^2$. How fast is the water running out at the end of 5 seconds? What is the average rate at which the water flows out during the first 5 seconds?
- **Sol.** Given that $L = 200(10 t)^2$ where L represents the number of litres of water in the pool. Differentiating both sides w.r.t, *t*, we get

$$
\frac{dL}{dt} = 200 \times 2(10 - t) (-1) = -400(10 - t)
$$

But the rate at which the water is running out $=\frac{dL}{dt} = 400(10 - t)$...(1) Rate at which the water is running after 5 seconds $= 400 \times (10 - 5) = 2000$ L/s (final rate) For initial rate put $t = 0$ $= 400(10 - 0) = 4000$ L/s The average rate at which the water is running out $=\frac{\text{Initial rate} + \text{Final rate}}{2} = \frac{4000 + 2000}{2} = \frac{6000}{2} = 3000 \text{ L/s}$ Hence, the required rate = 3000 L/s.

- **Q10.** The volume of a cube increases at a constant rate. Prove that the increase in its surface area varies inversely as the length of the side.
- **Sol.** Let *x* be the length of the cube

 \mathbf{r}

 \therefore Volume of the cube V = x^3 (1) Given that $\frac{dV}{dt} = K$

Differentiating Eq. (1) w.r.t. *t*, we get

$$
\frac{dV}{dt} = 3x^2 \cdot \frac{dx}{dt} = K \text{ (constant)}
$$

$$
\frac{dx}{dt} = \frac{K}{3x^2}
$$

Now surface area of the cube, $S = 6x^2$ Differentiating both sides w.r.t. *t*, we get

$$
\frac{ds}{dt} = 6 \cdot 2 \cdot x \cdot \frac{dx}{dt} = 12x \cdot \frac{K}{3x^2}
$$
\n
$$
\Rightarrow \qquad \frac{ds}{dt} = \frac{4K}{x} \qquad \Rightarrow \frac{ds}{dt} \propto \frac{1}{x} \qquad (4K = \text{constant})
$$

Hence, the surface area of the cube varies inversely as the length of the side.

- **Q11.** *x* and *y* are the sides of two squares such that $y = x x^2$. Find the rate of change of the area of second square with respect to the area of first square.
- **Sol.** Let area of the first square $A_1 = x^2$ and area of the second square $A_2 = y^2$ Now $A_1 = x^2$ and $A_2 = y^2 = (x - x^2)^2$ Differentiating both A_1 and A_2 w.r.t. *t*, we get

$$
\frac{dA_1}{dt} = 2x \cdot \frac{dx}{dt} \text{ and } \frac{dA_2}{dt} = 2(x - x^2) (1 - 2x) \cdot \frac{dx}{dt}
$$

\n
$$
\therefore \qquad \frac{dA_2}{dA_1} = \frac{\frac{dA_2}{dt}}{\frac{dA_1}{dt}} = \frac{2(x - x^2) (1 - 2x) \cdot \frac{dx}{dt}}{2x \cdot \frac{dx}{dt}}
$$

\n
$$
= \frac{x(1 - x) (1 - 2x)}{x} = (1 - x) (1 - 2x)
$$

\n
$$
= 1 - 2x - x + 2x^2 = 2x^2 - 3x + 1
$$

Hence, the rate of change of area of the second square with respect to first is $2x^2 - 3x + 1$.

- **Q12.** Find the condition that the curves $2x = y^2$ and $2xy = k$ intersect orthogonally.
- **Sol.** The two circles intersect orthogonally if the angle between the tangents drawn to the two circles at the point of their intersection is 90°.

Equation of the two circles are given as

$$
2x = y^2 \qquad \qquad \dots (i)
$$

and $2xy = k$...(*ii*)

Differentiating eq. (*i*) and (*ii*) w.r.t. *x*, we get

$$
2.1 = 2y \cdot \frac{dy}{dx} \implies \frac{dy}{dx} = \frac{1}{y} \implies m_1 = \frac{1}{y}
$$

(m_1 = slope of the tangent)
 $2xy - k$

$$
\Rightarrow 2\left[x \cdot \frac{dy}{dx} + y \cdot 1\right] = 0
$$

$$
\therefore \frac{dy}{dx} = -\frac{y}{x} \Rightarrow m_2 = -\frac{y}{x}
$$

 $[m_2 = \text{slope of the other tangent}]$

If the two tangents are perpendicular to each other, then $m_1 \times m_2 = -1$

$$
\Rightarrow \qquad \frac{1}{y} \times \left(-\frac{y}{x} \right) = -1 \quad \Rightarrow \quad \frac{1}{x} = 1 \quad \Rightarrow \quad x = 1
$$

$$
\Rightarrow \frac{1}{2\sqrt{x_1}} + \frac{1}{2\sqrt{y_1}} \cdot \frac{dy_1}{dx_1} = 0
$$

$$
\Rightarrow \frac{1}{\sqrt{x_1}} + \frac{1}{\sqrt{y_1}} \cdot \frac{dy_1}{dx_1} = 0 \Rightarrow \frac{dy_1}{dx_1} = -\frac{\sqrt{y_1}}{\sqrt{x_1}}
$$
...(i)

Since the tangent to the given curve at (x_1, y_1) is equally inclined to the axes.

 \therefore Slope of the tangent $\frac{uy_1}{y}$ 1 $\frac{dy_1}{dx_1}$ = $\pm \tan \frac{\pi}{4}$ = ± 1 So, from eq. (*i*) we get 1 1 $-\frac{\sqrt{y_1}}{\sqrt{x_1}} = \pm 1$

Squaring both sides, we get

$$
\frac{y_1}{x_1} = 1 \quad \Rightarrow \quad y_1 = x_1
$$

Putting the value of y_1 in the given equation of the curve.

$$
\sqrt{x_1} + \sqrt{y_1} = 4
$$
\n
$$
\Rightarrow \quad \sqrt{x_1} + \sqrt{x_1} = 4 \Rightarrow 2\sqrt{x_1} = 4 \Rightarrow \sqrt{x_1} = 2 \Rightarrow x_1 = 4
$$
\nSince\n
$$
y_1 = x_1
$$
\n
$$
\therefore \quad y_1 = 4
$$

Hence, the required point is (4, 4).

- **Q15.** Find the angle of intersection of the curves $y = 4 x^2$ and $y = x^2$.
	- **Sol.** We know that the angle of intersection of two curves is equal to the angle between the tangents drawn to the curves at their point of intersection.

The given curves are $y = 4 - x^2 ... (i)$ and $y = x^2$...(*ii*) Differentiating eq. (*i*) and (*ii*) with respect to *x*, we have

$$
\frac{dy}{dx} = -2x \implies m_1 = -2x
$$

 m_1 is the slope of the tangent to the curve (i) .

and
$$
\frac{dy}{dx} = 2x \implies m_2 = 2x
$$

 $m₂$ is the slope of the tangent to the curve (*ii*).

So,
$$
m_1 = -2x
$$
 and $m_2 = 2x$

Now solving eq.
$$
(i)
$$
 and (ii) we get

$$
\Rightarrow \qquad 4 - x^2 = x^2 \Rightarrow 2x^2 = 4 \Rightarrow x^2 = 2 \Rightarrow x = \pm \sqrt{2}
$$

So, $m_1 = -2x = -2\sqrt{2}$ and $m_2 = 2x = 2\sqrt{2}$

Let θ be the angle of intersection of two curves

$$
tan θ = \left| \frac{m_2 - m_1}{1 + m_1 m_2} \right|
$$

\n
$$
= \left| \frac{2\sqrt{2} + 2\sqrt{2}}{1 - (2\sqrt{2})(2\sqrt{2})} \right| = \left| \frac{4\sqrt{2}}{1 - 8} \right| = \left| \frac{4\sqrt{2}}{-7} \right| = \frac{4\sqrt{2}}{7}
$$

\n∴ θ = tan⁻¹ $\left(\frac{4\sqrt{2}}{7} \right)$
\nHence, the required angle is tan⁻¹ $\left(\frac{4\sqrt{2}}{7} \right)$.
\nQ16. Prove that the curves $y^2 = 4x$ and $x^2 + y^2 - 6x + 1 = 0$ touch each other at the point (1, 2).
\nSol. Given that the equation of the two curves are $y^2 = 4x$...(i)
\nand $x^2 + y^2 - 6x + 1 = 0$...(ii)
\nDifferentiating (i) w.r.t. x , we get $2y \frac{dy}{dx} = 4 \Rightarrow \frac{dy}{dx} = \frac{2}{y}$
\nSlope of the tangent at (1, 2), $m_1 = \frac{2}{2} = 1$
\nDifferentiating (ii) w.r.t. $x \Rightarrow 2x + 2y \cdot \frac{dy}{dx} - 6 = 0$
\n⇒ $2y \cdot \frac{dy}{dx} = 6 - 2x \Rightarrow \frac{dy}{dx} = \frac{6 - 2x}{2y}$
\n∴ Slope of the tangent at the same point (1, 2)
\n⇒ $m_2 = \frac{6 - 2 \times 1}{2 \times 2} = \frac{4}{4} = 1$
\nWe see that $m_1 = m_2 = 1$ at the point (1, 2).
\nHence, the given circles touch each other at the same point (1, 2).
\nQ17. Find the equation of the normal lines to the curve $3x^2 - y^2 = 8$ which are parallel to the line $x + 3y = 4$.
\nSol. We have equation of the curve $3x^2 - y^2 = 8$

Differentiating both sides w.r.t. *x*, we get

$$
\Rightarrow \quad 6x - 2y \cdot \frac{dy}{dx} = 0 \quad \Rightarrow \quad -2y \frac{dy}{dx} = -6x \quad \Rightarrow \quad \frac{dy}{dx} = \frac{3x}{y}
$$
\nSlope of the tangent to the given curve = $\frac{3x}{y}$

$$
\therefore \quad \text{Slope of the normal to the curve} = -\frac{1}{\frac{3x}{y}} = -\frac{y}{3x}.
$$

Now differentiating both sides the given line *x* + 3*y* = 4

⇒ 1+3.
$$
\frac{dy}{dx} = 0
$$
 ⇒ $\frac{dy}{dx} = -\frac{1}{3}$
\nSince the normal to the curve is parallel to the given line
\n $x+3y = 4$.
\n∴ $-\frac{y}{3x} = -\frac{1}{3}$ ⇒ $y = x$
\nPutting the value of y in $3x^2 - y^2 = 8$, we get
\n $3x^2 - x^2 = 8$ ⇒ $2x^2 = 8$ ⇒ $x^2 = 4$ ⇒ $x = \pm 2$
\n∴ The points on the curve are (2, 2) and (-2, -2).
\nNow equation of the normal to the curve at (2, 2) is
\n $y - 2 = -\frac{1}{3}(x - 2)$
\n⇒ $3y - 6 = -x + 2$ ⇒ $x + 3y = 8$
\nat (-2, -2) $y + 2 = -\frac{1}{3}(x + 2)$
\n⇒ $3y + 6 = -x - 2$ ⇒ $x + 3y = -8$
\nHence, the required equations are $x + 3y = 8$ and $x + 3y = -8$ or
\n $x + 3y = \pm 8$.
\nQ18. A window points on the curve $x^2 + y^2 - 2x - 4y + 1 = 0$, the tangents
\nare parallel to the *y*-axis?
\nSol. Given that the equation of the curve is
\n $x^2 + y^2 - 2x - 4y + 1 = 0$...(i)
\nDifferentiating both sides w.r.t. *x*, we have
\n $2x + 2y \cdot \frac{dy}{dx} - 2 - 4 \cdot \frac{dy}{dx} = 0$
\n⇒ $(2y - 4) \frac{dy}{dx} = 2 - 2x$ ⇒ $\frac{dy}{dx} = \frac{2 - 2x}{2y - 4}$...(ii)
\nSince the tangent to the curve is parallel to the *y*-axis.
\n∴ Slope $\frac{dy}{dx} = \tan \frac{\pi}{2} = \infty = \frac{1}{0}$
\nSo, from eq. (ii) we get
\n $\frac{2 - 2x}{2y - 4} = \frac{1}{0}$ ⇒ $2y - 4 = 0$ ⇒ <

Hence, the required points are $(-1, 2)$ and $(3, 2)$.

- **Q19.** Show that the line $\frac{x}{a} + \frac{y}{b} = 1$, touches the curve $y = b \cdot e^{-x/a}$ at the point where the curve intersects the axis of *y*.
- **Sol.** Given that $y = b \cdot e^{-x/a}$, the equation of curve

and $\frac{x}{a} + \frac{y}{b} = 1$, the equation of line. Let the coordinates of the point where the curve intersects the y -axis be $(0, y_1)$ Now differentiating $y = b \cdot e^{-x/a}$ both sides w.r.t. *x*, we get $\frac{dy}{dx} = b \cdot e^{-x/a} \left(-\frac{1}{a} \right) = -\frac{b}{a} \cdot e^{-x/a}$ So, the slope of the tangent, $m_1 = -\frac{b}{c} e^{-x/a}$. Differentiating $\frac{x}{a} + \frac{y}{b} = 1$ both sides w.r.t. *x*, we get $\frac{1}{a} + \frac{1}{b} \cdot \frac{dy}{dx} = 0$ So, the slope of the line, $m_2 = \frac{-b}{a}$. If the line touches the curve, then $m_1 = m_2$ \Rightarrow $\frac{-b}{a} \cdot e^{-x/a} = \frac{-b}{a} \Rightarrow e^{-x/a} = 1$ $\Rightarrow \frac{-x}{a} \log e = \log 1$ (Taking log on both sides) \Rightarrow $\frac{u}{x}$ $\frac{-x}{x}$ $\frac{-x}{a} = 0$ $\implies x = 0$ Putting $x = 0$ in equation $y = b \cdot e^{-x/a}$ $y = b \cdot e^0 = b$ Hence, the given equation of curve intersect at (0, *b*) i.e. on *y*-axis. **Q20.** Show that $f(x) = 2x + \cot^{-1} x + \log(\sqrt{1 + x^2} - x)$ is increasing in **R**. **Sol.** Given that $f(x) = 2x + \cot^{-1} x + \log(\sqrt{1 + x^2} - x)$ Differentiating both sides w.r.t. *x*, we get $f'(x) = 2 - \frac{1}{1+x^2} + \frac{1}{\sqrt{1+x^2} - x} \times \frac{u}{dx} (\sqrt{1+x^2} - x)$ $2 - \frac{1}{1 + x^2} + \frac{1}{\sqrt{1 + x^2}} \times \frac{d}{dx} (\sqrt{1}$ $1 + x^2 \sqrt{1}$ $\frac{1}{x^2}$ + $\frac{1}{\sqrt{1+x^2}-x}$ $\times \frac{d}{dx}(\sqrt{1+x^2}-x)$ = 2 - $\frac{1}{2\sqrt{1+x^2}} \times (2x-1)$ $+x^2$ $\sqrt{1+x^2}$ – 2 2 $\sqrt{1+x^2}$ $\frac{1}{\sqrt{2}} \times (2x-1)$ $2-\frac{1}{2}+\frac{(2\sqrt{1}}{2})$ $1 + x^2$ $\sqrt{1}$ *x x* x^2 $\sqrt{1+x^2-x^2}$

$$
= 2 - \frac{1}{1 + x^2} + \frac{x - \sqrt{1 + x^2}}{\sqrt{1 + x^2} (\sqrt{1 + x^2} - x)}
$$

$$
= 2 - \frac{1}{1 + x^2} - \frac{(\sqrt{1 + x^2} - x)}{\sqrt{1 + x^2} (\sqrt{1 + x^2} - x)}
$$

$$
= 2 - \frac{1}{1 + x^2} - \frac{1}{\sqrt{1 + x^2}}
$$

For increasing function, $f'(x) \ge 0$

$$
\therefore \quad 2 - \frac{1}{1 + x^2} - \frac{1}{\sqrt{1 + x^2}} \ge 0
$$
\n
$$
\Rightarrow \quad \frac{2(1 + x^2) - 1 + \sqrt{1 + x^2}}{(1 + x^2)} \ge 0 \quad \Rightarrow \quad 2 + 2x^2 - 1 + \sqrt{1 + x^2} \ge 0
$$
\n
$$
\Rightarrow \quad 2x^2 + 1 + \sqrt{1 + x^2} \ge 0 \quad \Rightarrow \quad 2x^2 + 1 \ge -\sqrt{1 + x^2}
$$
\nSquaring both sides, we get $4x^4 + 1 + 4x^2 \ge 1 + x^2$

Squaring both sides, we get $4x^4 + 1 + 4x^2 \ge 1 + x^2$ \Rightarrow 4*x*⁴ + 4*x*² – *x*² ≥ 0 \Rightarrow 4*x*⁴ + 3*x*² ≥ 0 \Rightarrow *x*²(4*x*² + 3) ≥ 0 which is true for any value of $x \in \mathbb{R}$.

Hence, the given function is an increasing function over R.

- **Q21.** Show that for $a \ge 1$, $f(x) = \sqrt{3} \sin x \cos x 2ax + b$ is decreasing in **R**.
- **Sol.** Given that: $f(x) = \sqrt{3} \sin x \cos x 2ax + b, a \ge 1$ Differentiating both sides w.r.t. *x*, we get

$$
f'(x) = \sqrt{3} \cos x + \sin x - 2a
$$

For decreasing function,
$$
f'(x) < 0
$$

$$
\therefore \sqrt{3} \cos x + \sin x - 2a < 0
$$

\n
$$
\Rightarrow 2\left(\frac{\sqrt{3}}{2} \cos x + \frac{1}{2} \sin x\right) - 2a < 0
$$

\n
$$
\Rightarrow \frac{\sqrt{3}}{2} \cos x + \frac{1}{2} \sin x - a < 0
$$

\n
$$
\Rightarrow \left(\cos \frac{\pi}{6} \cos x + \sin \frac{\pi}{6} \sin x\right) - a < 0
$$

\n
$$
\Rightarrow \cos \left(x - \frac{\pi}{6}\right) - a < 0
$$

\nSince $\cos x \in [-1, 1]$ and $a \ge 1$

 $f'(x) < 0$ Hence, the given function is decreasing in R.

Q22. Show that $f(x) = \tan^{-1}(\sin x + \cos x)$ is an increasing function in $\left(0,\frac{\pi}{4}\right)$. $\binom{6}{4}$ **Sol.** Given that: $f(x) = \tan^{-1}(\sin x + \cos x)$ in $\left(0, \frac{\pi}{4}\right)$ $\binom{6}{4}$ Differentiating both sides w.r.t. *x*, we get $f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} \cdot \frac{d}{dx}(\sin x + \cos x)$ $+(sin x +$ \Rightarrow $f'(x) = \frac{1 + (\sin x + \cos x)^2}{1 + (\sin x + \cos x)^2}$ $1 \times (\cos x - \sin x)$ $1 + (\sin x + \cos x)$ $x - \sin x$ $x + \cos x$ \times (cos x – $+(sin x +$ \Rightarrow $f'(x) = \frac{\cos x - \sin x}{1 + \sin^2 x + \cos^2 x + \sin^2 x}$ $1 + \sin^2 x + \cos^2 x + 2 \sin x \cos x$ $x - \sin x$ $x + \cos^2 x + 2 \sin x \cos x$ - $+\sin^2 x + \cos^2 x +$ $\Rightarrow f'(x) = \frac{\cos x - \sin x}{1 + 1 + 2 \sin x \cos x}$ $x - \sin x$ $x \cos x$ - $\frac{1}{x+1+2\sin x \cos x}$ \Rightarrow $f'(x) =$ $\cos x - \sin x$ $2 + 2 \sin x \cos x$ $x - \sin x$ $x \cos x$ - + For an increasing function $f'(x) \ge 0$ $\ddot{\cdot}$. $\cos x - \sin x$ $2 + 2 \sin x \cos x$ $x - \sin x$ $x \cos x$ - $\frac{1}{x+2 \sin x \cos x} \ge 0$ \Rightarrow $\cos x - \sin x \ge 0$ $\left[\because (2 + \sin 2x) \ge 0 \text{ in } \left(0, \frac{\pi}{4}\right)\right]$ \Rightarrow cos *x* \ge sin *x*, which is true for $\left(0, \frac{\pi}{4}\right)$ $\binom{6}{4}$ Hence, the given function $f(x)$ is an increasing function in $\left(0, \frac{\pi}{4}\right)$. **Q23.** At what point, the slope of the curve $y = -x^3 + 3x^2 + 9x - 27$ is maximum ? Also find the maximum slope. **Sol.** Given that: $y = -x^3 + 3x^2 + 9x - 27$ Differentiating both sides w.r.t. *x*, we get *dy dx* $=-3x^2+6x+9$ Let slope of the cuve $\frac{dy}{dx} = Z$ \therefore $z = -3x^2 + 6x + 9$ Differentiating both sides w.r.t. *x*, we get *dz* $\frac{dz}{dx} = -6x + 6$ For local maxima and local minima, $\frac{dz}{dx} = 0$ $-6x + 6 = 0 \implies x = 1$ \Rightarrow 2 2 $\frac{d^2z}{dx^2}$ = –6 < 0 Maxima Put *x* = 1 in equation of the curve *y* = $(-1)^3 + 3(1)^2 + 9(1) - 27$ $= -1 + 3 + 9 - 27 = -16$

Maximum slope = $-3(1)^2 + 6(1) + 9 = 12$

Hence, $(1, -16)$ is the point at which the slope of the given curve is maximum and maximum slope = 12.

Q24. Prove that $f(x) = \sin x + \sqrt{3} \cos x$ has maximum value at $x = \frac{\pi}{6}$.

Sol. We have:
$$
f(x) = \sin x + \sqrt{3} \cos x = 2\left(\frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x\right)
$$

\n
$$
= 2\left(\cos \frac{\pi}{3} \sin x + \sin \frac{\pi}{3} \cos x\right) = 2\sin\left(x + \frac{\pi}{3}\right)
$$
\n
$$
f'(x) = 2\cos\left(x + \frac{\pi}{3}\right); \ f''(x) = -2\sin\left(x + \frac{\pi}{3}\right)
$$
\n
$$
f''(x)_{x = \frac{\pi}{6}} = -2\sin\left(\frac{\pi}{6} + \frac{\pi}{3}\right)
$$
\n
$$
= -2\sin\frac{\pi}{2} = -2.1 = -2 < 0 \text{ (Maxima)}
$$
\n
$$
= -2 \times \frac{\sqrt{3}}{2} = -\sqrt{3} < 0 \text{ (Maxima)}
$$

Maximum value of the function at $x = \frac{\pi}{6}$ is

$$
\sin\frac{\pi}{6} + \sqrt{3}\cos\frac{\pi}{6} = \frac{1}{2} + \sqrt{3}\cdot\frac{\sqrt{3}}{2} = 2
$$

Hence, the given function has maximum value at $x = \frac{\pi}{6}$ and the maximum value is 2.

LONG ANSWER TYPE QUESTIONS

Q25. If the sum of the lengths of the hypotenuse and a side of a right angled triangle is given, show that the area of the triangle π

is maximum when the angle between them is $\frac{\pi}{3}$.

Sol. Let $\triangle ABC$ be the right angled \mathbf{A} triangle in which $\angle B = 90^\circ$ Let $AC = x$, $BC = y$ \therefore AB = $\sqrt{x^2 - y^2}$ $\angle ACB = \theta$ θ \overline{B} Let $Z = x + y$ (given) \mathcal{U} Now area of $\triangle ABC$, $A = \frac{1}{2} \times AB \times BC$

$$
\Rightarrow A = \frac{1}{2}y \cdot \sqrt{x^2 - y^2} \Rightarrow A = \frac{1}{2}y \cdot \sqrt{(Z - y)^2 - y^2}
$$

Squaring both sides, we get
\n
$$
A^2 = \frac{1}{4}y^2 [(Z - y)^2 - y^2] \Rightarrow A^2 = \frac{1}{4}y^2 [Z^2 + y^2 - 2Zy - y^2]
$$
\n
$$
\Rightarrow P = \frac{1}{4}y^2 [Z^2 - 2Zy] \Rightarrow P = \frac{1}{4} [y^2 Z^2 - 2Zy^3] \qquad [A^2 = P]
$$
\nDifferentiating both sides w.r.t. y we get
\n
$$
\frac{dP}{dy} = \frac{1}{4} [2yz^2 - 6zy^2] \qquad ...(i)
$$
\nFor local maxima and local minima, $\frac{dP}{dy} = 0$
\n∴ $\frac{1}{4} (2yz^2 - 6zy^2) = 0$
\n⇒ $\frac{2yZ}{4} (Z - 3y) = 0 \Rightarrow yZ(Z - 3y) = 0$
\n⇒ $yZ \neq 0 \qquad (∴ y \neq 0 \text{ and } Z \neq 0)$
\n∴ $Z - 3y = 0$
\n⇒ $y = \frac{Z}{3} \Rightarrow y = \frac{x + y}{3} \qquad (∴ Z = x + y)$
\n⇒ $3y = x + y \Rightarrow 3y - y = x \Rightarrow 2y = x$
\n⇒ $\frac{y}{x} = \frac{1}{2} \Rightarrow \cos \theta = \frac{1}{2}$
\n∴ $\theta = \frac{\pi}{3}$

Differentiating eq. (*i*) w.r.t. *y*, we have $\frac{u}{du^2}$ $rac{d^2P}{dy^2} = \frac{1}{4} [2Z^2 - 12Zy]$ d^2

$$
\frac{d^2P}{dy^2} \text{ at } y = \frac{Z}{3} = \frac{1}{4} \left[2Z^2 - 12Z \cdot \frac{Z}{3} \right]
$$

$$
= \frac{1}{4} [2Z^2 - 4Z^2] = \frac{-Z^2}{2} < 0 \text{ Maxima}
$$

Hence, the area of the given triangle is maximum when the angle between its hypotenuse and a side is $\frac{\pi}{3}$.

- **Q26.** Find the points of local maxima, local minima and the points of inflection of the function $f(x) = x^5 - 5x^4 + 5x^3 - 1$. Also find the corresponding local maximum and local minimum values.
- **Sol.** We have $f(x) = x^5 5x^4 + 5x^3 1$ $f'(x) = 5x^4 - 20x^3 + 15x^2$

For local maxima and local minima, $f'(x) = 0$

 \Rightarrow $5x^4 - 20x^3 + 15x^2 = 0$ $\Rightarrow 5x^2(x^2 - 4x + 3) = 0$ \Rightarrow $5x^2(x^2 - 3x - x + 3) = 0$ \Rightarrow $x^2(x - 3)(x - 1) = 0$ \therefore $x = 0, x = 1$ and $x = 3$ Now $f''(x) = 20x^3 - 60x^2 + 30x$ \Rightarrow $f''(x)_{at\,x=0} = 20(0)^3 - 60(0)^2 + 30(0) = 0$ which is neither maxima nor minima. \therefore *f*(*x*) has the point of inflection at *x* = 0 $f''(x)_{at x=1} = 20(1)^3 - 60(1)^2 + 30(1)$ $= 20 - 60 + 30 = -10 < 0$ Maxima $f''(x)_{at\,x=3} = 20(3)^3 - 60(3)^2 + 30(3)$ $= 540 - 540 + 90 = 90 > 0$ Minima The maximum value of the function at $x = 1$ $f(x) = (1)^5 - 5(1)^4 + 5(1)^3 - 1$ $= 1 - 5 + 5 - 1 = 0$ The minimum value at $x = 3$ is $f(x) = (3)^5 - 5(3)^4 + 5(3)^3 - 1$ $= 243 - 405 + 135 - 1 = 378 - 406 = -28$

Hence, the function has its maxima at $x = 1$ and the maximum value = 0 and it has minimum value at $x = 3$ and its minimum value is – 28.

 $x = 0$ is the point of inflection.

- **Q27.** A telephone company in a town has 500 subscribers on its list and collects fixed charges of $\bar{\mathfrak{c}}$ 300 per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of $\bar{\tau}$ 1.00, one subscriber will discontinue the service. Find what increase will bring maximum profit?
- **Sol.** Let us consider that the company increases the annual subscription by $\bar{\tau}$ *x*.

So, *x* is the number of subscribers who discontinue the services.

 \therefore Total revenue, $R(x) = (500 - x) (300 + x)$ $= 150000 + 500x - 300x - x^2$ $=-x^2+200x+150000$ Differentiating both sides w.r.t. *x*, we get $R'(x) = -2x + 200$

For local maxima and local minima, $R'(x) = 0$

$$
-2x + 200 = 0 \implies x = 100
$$

R''(x) = -2 < 0 Maxima

So, $R(x)$ is maximum at $x = 100$

Hence, in order to get maximum profit, the company should increase its annual subscription by $\bar{\tau}$ 100.

- **Q28.** If the straight line *x* cos $\alpha + y$ sin $\alpha = p$ touches the curve $rac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $+\frac{y}{l} = 1$, then prove that $a^2 \cos^2 \alpha + b^2 \sin^2 \alpha = p^2$.
- **Sol.** The given curve is $rac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $+\frac{y}{1^2} = 1$...(*i*) and the straight line *x* cos $\alpha + \gamma \sin \alpha = p$...(*ii*) Differentiating eq. (*i*) w.r.t. *x*, we get $rac{1}{a^2} \cdot 2x + \frac{1}{b^2} \cdot 2y \cdot \frac{dy}{dx} = 0$ \Rightarrow $\frac{x}{a^2} + \frac{y}{b^2} \frac{dy}{dx}$ a^2 b^2 *dx* $+\frac{y}{b^2}\frac{dy}{dx}=0 \implies \frac{dy}{dx}=$ 2 2 $-\frac{b^2}{a^2} \cdot \frac{x}{y}$ So the slope of the curve = 2 2 b^2 *x a y* $\frac{-b^2}{2}$. Now differentiating eq. (*ii*) w.r.t. *x*, we have

 $\cos \alpha + \sin \alpha \cdot \frac{dy}{dx} = 0$ \therefore $\frac{dy}{dx} = \frac{-\cos \alpha}{\sin \alpha} = -\cot$ $\frac{-\cos \alpha}{\sin \alpha}$ = $-\cot \alpha$

So, the slope of the straight line $= - \cot \alpha$ If the line is the tangent to the curve, then

$$
\frac{-b^2}{a^2} \cdot \frac{x}{y} = -\cot \alpha \implies \frac{x}{y} = \frac{a^2}{b^2} \cdot \cot \alpha \implies x = \frac{a^2}{b^2} \cot \alpha \cdot y
$$

\nNow from eq. (*ii*) we have $x \cos \alpha + y \sin \alpha = p$
\n
$$
\implies \frac{a^2}{b^2} \cdot \cot \alpha \cdot y \cdot \cos \alpha + y \sin \alpha = p
$$

\n
$$
\implies a^2 \cot \alpha \cdot \cos \alpha y + b^2 \sin \alpha y = b^2 p
$$

\n
$$
\implies a^2 \frac{\cos \alpha}{\sin \alpha} \cdot \cos \alpha y + b^2 \sin \alpha y = b^2 p
$$

\n
$$
\implies a^2 \cos^2 \alpha y + b^2 \sin^2 \alpha y = b^2 \sin \alpha p
$$

\n
$$
\implies a^2 \cos^2 \alpha + b^2 \sin^2 \alpha = \frac{b^2}{y} \cdot \sin \alpha \cdot p
$$

\n
$$
\implies a^2 \cos^2 \alpha + b^2 \sin^2 \alpha = p \cdot p \quad \left[\because \frac{b^2}{y} \sin \alpha = p\right]
$$

\nHence, $a^2 \cos^2 \alpha + b^2 \sin^2 \alpha = p^2$

Alternate method:

We know that $y = mx + c$ will touch the ellipse

$$
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ if } c^2 = a^2m^2 + b^2
$$

Here equation of straight line is $x \cos \alpha + y \sin \alpha = p$ and that

of ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $+\frac{y}{12}$ =

$$
x\cos\alpha+y\sin\alpha=p
$$

$$
\Rightarrow y \sin \alpha = -x \cos \alpha + p
$$

$$
\Rightarrow \qquad y = -x \frac{\cos \alpha}{\sin \alpha} + \frac{p}{\sin \alpha} \qquad \Rightarrow \qquad y = -x \cot \alpha + \frac{p}{\sin \alpha}
$$

Comparing with $y = mx + c$, we get

$$
m = -\cot \alpha
$$
 and $c = \frac{p}{\sin \alpha}$

So, according to the condition, we get $c^2 = a^2m^2 + b^2$

$$
\frac{p^2}{\sin^2 \alpha} = a^2(-\cot \alpha)^2 + b^2
$$

\n
$$
\Rightarrow \frac{p^2}{\sin^2 \alpha} = \frac{a^2 \cos^2 \alpha}{\sin^2 \alpha} + b^2 \Rightarrow p^2 = a^2 \cos^2 \alpha + b^2 \sin^2 \alpha
$$

Hence, $a^2 \cos^2 \alpha + b^2 \sin^2 \alpha = p^2$ Hence proved.

Q29. An open box with square base is to be made of a given quantity of card board of area *c*². Show that the maximum volume of 3

the box is $6\sqrt{3}$ $\frac{c^3}{\sqrt{c}}$ cubic units.

- **Sol.** Let *x* be the length of the side of the square base of the cubical open box and *y* be its height.
	- \therefore Surface area of the open box

$$
c2 = x2 + 4xy \implies y = \frac{c2 - x2}{4x} ...(i)
$$

Now volume of the box, V = x × x × y

$$
\implies V = x2y
$$

4 $x^2\left(\frac{c^2-x}{\sigma}\right)$ *x*

 $\Rightarrow V = x^2 \left(\frac{c^2 - x^2}{4x} \right)$

 \Rightarrow V = $\frac{1}{4} (c^2 x - x^3)$

$$
\frac{\frac{1}{y}}{\frac{1}{x} \cdot \frac{1}{x}}
$$

Differentiating both sides w.r.t. *x*, we get

⇁

$$
\frac{dV}{dx} = \frac{1}{4}(c^2 - 3x^2) \qquad ...(ii)
$$

For local maxima and local minima, $\frac{dV}{dx} = 0$
 $\therefore \quad \frac{1}{4}(c^2 - 3x^2) = 0 \Rightarrow c^2 - 3x^2 = 0$
 $\Rightarrow \qquad x^2 = \frac{c^2}{3}$
 $\therefore \qquad x = \sqrt{\frac{c^2}{3}} = \frac{c}{\sqrt{3}}$

Now again differentiating eq. (*ii*) w.r.t. *x*, we get

$$
\frac{d^2V}{dx^2} = \frac{1}{4}(-6x) = \frac{-3}{2} \cdot \frac{c}{\sqrt{3}} < 0 \quad \text{(maxima)}
$$

Volume of the cubical box $(V) = x^2 y$

$$
= x^{2} \left(\frac{c^{2} - x^{2}}{4x} \right) = \frac{c}{\sqrt{3}} \left[\frac{c^{2} - \frac{c^{2}}{3}}{4} \right] = \frac{c}{\sqrt{3}} \times \frac{2c^{2}}{3 \times 4} = \frac{c^{3}}{6\sqrt{3}}
$$

Hence, the maximum volume of the open box is

3 $6\sqrt{3}$ $\frac{c^3}{\sqrt{2}}$ cubic units.

Q30. Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its sides. Also find the maximum volume.

Sol. Let *x* and *y* be the length and breadth of a given rectangle ABCD as per question, the rectangle be *y* revolved about side AD which will make a cylinder with radius *x* and height *y*.
\n
$$
\therefore
$$
 Volume of the cylinder $V = \pi x^2 y$...(i)
\nNow perimeter of rectangle $P = 2(x + y) \Rightarrow 36 = 2(x + y)$...(ii)
\nPutting the value of *y* in eq. (i) we get
\n
$$
V = \pi x^2 (18 - x)
$$

\n⇒
$$
V = \pi (18x^2 - x^3)
$$

\nDifferentiating both sides w.r.t. *x*, we get
\n
$$
\frac{dV}{dx} = \pi (36x - 3x^2)
$$
 ...(iii)

For local maxima and local minima $\frac{dV}{dx} = 0$ $\pi(36x - 3x^2) = 0 \implies 36x - 3x^2 = 0$ \Rightarrow $3x(12-x) = 0$ \Rightarrow $x \neq 0$ \therefore $12 - x = 0 \Rightarrow x = 12$ From eq. (*ii*) $y = 18 - 12 = 6$ Differentiating eq. (*iii*) w.r.t. *x*, we get 2 2 $\frac{d^2 \text{V}}{dx^2} = \pi(36 - 6x)$ at $x = 12$ 2 2 $\frac{d^2 \text{V}}{dx^2}$ = $\pi(36 - 6 \times 12)$
= $\pi(36 - 72)$ = $-36\pi < 0$ maxima

Now volume of the cylinder so formed = $\pi x^2 y$

$$
= \pi \times (12)^2 \times 6 = \pi \times 144 \times 6 = 864 \pi \text{ cm}^3
$$

 $3/2$

Hence, the required dimensions are 12 cm and 6 cm and the maximum volume is 864π cm³.

- **Q31.** If the sum of the surface areas of cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum?
- **Sol.** Let *x* be the edge of the cube and *r* be the radius of the sphere. Surface area of cube = $6x^2$

and surface area of the sphere = $4\pi r^2$

$$
\therefore \qquad 6x^2 + 4\pi r^2 = K(\text{constant}) \quad \Rightarrow \quad r = \sqrt{\frac{K - 6x^2}{4\pi}} \qquad \dots(i)
$$

Volume of the cube = x^3 and the volume of sphere = $\frac{4}{3}\pi r^3$

 \therefore Sum of their volumes (V) = Volume of cube + Volume of sphere

$$
\Rightarrow \qquad V = x^3 + \frac{4}{3}\pi r^3
$$

$$
\Rightarrow \qquad V = x^3 + \frac{4}{3}\pi \times \left(\frac{K - 6x^2}{4\pi}\right)
$$

Differentiating both sides w.r.t. *x*, we get

$$
\frac{dV}{dx} = 3x^2 + \frac{4\pi}{3} \times \frac{3}{2} (K - 6x^2)^{1/2} (-12x) \times \frac{1}{(4\pi)^{3/2}}
$$

$$
= 3x^{2} + \frac{2\pi}{(4\pi)^{3/2}} \times (-12x) (K - 6x^{2})^{1/2}
$$

\n
$$
= 3x^{2} + \frac{1}{4\pi^{1/2}} \times (-12x) (K - 6x^{2})^{1/2}
$$

\n∴ $\frac{dV}{dx} = 3x^{2} - \frac{3x}{\sqrt{\pi}} (K - 6x^{2})^{1/2}$...(ii)
\nFor local maxima and local minima, $\frac{dV}{dx} = 0$
\n∴ $3x^{2} - \frac{3x}{\sqrt{\pi}} (K - 6x^{2})^{1/2} = 0$
\n⇒ $3x \left[x - \frac{(K - 6x^{2})^{1/2}}{\sqrt{\pi}} \right] = 0$
\n $x \neq 0$ ∴ $x - \frac{(K - 6x^{2})^{1/2}}{\sqrt{\pi}} = 0$
\n⇒ $x = \frac{(K - 6x^{2})^{1/2}}{\sqrt{\pi}}$
\nSquaring both sides, we get
\n $x^{2} = \frac{K - 6x^{2}}{\pi}$ ⇒ $\pi x^{2} = K - 6x^{2}$
\n⇒ $\pi x^{2} + 6x^{2} = K$ ⇒ $x^{2}(\pi + 6) = K$ ⇒ $x^{2} = \frac{K}{\pi + 6}$
\n∴ $x = \sqrt{\frac{K}{\pi + 6}}$
\nNow putting the value of K in eq. (*i*), we get

 $6x^2 + 4\pi r^2 = x^2(\pi + 6)$ \Rightarrow 6*x*² + 4 $\pi r^2 = \pi x^2 + 6x^2 \Rightarrow 4\pi r^2 = \pi x^2 \Rightarrow 4r^2 = x^2$ \therefore 2*r* = *x* \therefore $x:2r = 1:1$

Now differentiating eq. (*ii*) w.r.t *x*, we have

$$
\frac{d^2V}{dx^2} = 6x - \frac{3}{\sqrt{\pi}} \frac{d}{dx} [x(K - 6x^2)^{1/2}]
$$

= $6x - \frac{3}{\sqrt{\pi}} \left[x \cdot \frac{1}{2\sqrt{K - 6x^2}} \times (-12x) + (K - 6x^2)^{1/2} \cdot 1 \right]$
= $6x - \frac{3}{\sqrt{\pi}} \left[\frac{-6x^2}{\sqrt{K - 6x^2}} + \sqrt{K - 6x^2} \right]$

where \sim 22

$$
= 6x - \frac{3}{\sqrt{\pi}} \left[\frac{-6x^2 + K - 6x^2}{\sqrt{K - 6x^2}} \right] = 6x + \frac{3}{\sqrt{\pi}} \left[\frac{12x^2 - K}{\sqrt{K - 6x^2}} \right]
$$

Put $x = \sqrt{\frac{K}{\pi + 6}} = 6\sqrt{\frac{K}{\pi + 6}} + \frac{3}{\sqrt{\pi}} \left[\frac{\frac{12K}{\pi + 6} - K}{\sqrt{K - \frac{6K}{\pi + 6}}} \right]$

$$
= 6\sqrt{\frac{K}{\pi + 6}} + \frac{3}{\sqrt{\pi}} \left[\frac{12K - \pi K - 6K}{\pi + 6} \right]
$$

$$
= 6\sqrt{\frac{K}{\pi + 6}} + \frac{3}{\sqrt{\pi}} \left[\frac{6K - \pi K}{\sqrt{\pi K}} \right]
$$

$$
= 6\sqrt{\frac{K}{\pi + 6}} + \frac{3}{\sqrt{\pi}} \left[\frac{6K - \pi K}{\sqrt{\pi + 6}} \right]
$$

$$
= 6\sqrt{\frac{K}{\pi + 6}} + \frac{3}{\pi \sqrt{K}} [(6K - \pi K) \sqrt{\pi + 6}] > 0
$$

So it is minima.

Hence, the required ratio is 1:1 when the combined volume is minimum.

Q32. AB is a diameter of a circle and C is any point on the circle. Show that the area of \triangle ABC is maximum, when it is isosceles.

point on the circle with radius *r*.

Let
$$
AC = x
$$

\n
$$
\therefore BC = \sqrt{AB^2 - AC^2}
$$
\n
$$
\Rightarrow BC = \sqrt{(2r)^2 - x^2} \Rightarrow BC = \sqrt{4r^2 - x^2} \qquad ...(i)
$$
\nNow area of $\triangle ABC$, $A = \frac{1}{2} \times AC \times BC$
\n
$$
\Rightarrow A = \frac{1}{2}x \cdot \sqrt{4r^2 - x^2}
$$

$$
\mathcal{L}_{\mathcal{A}}(x) = \mathcal{L}_{\mathcal{A}}(x)
$$

Squaring both sides, we get

$$
A^2 = \frac{1}{4}x^2(4r^2 - x^2)
$$

Let $A^2 = Z$

$$
\therefore \qquad Z = \frac{1}{4} x^2 (4r^2 - x^2) \quad \Rightarrow \ Z = \frac{1}{4} (4x^2 r^2 - x^4)
$$

Differentiating both sides w.r.t. *x*, we get

$$
\frac{dZ}{dx} = \frac{1}{4} [8xr^2 - 4x^3] \qquad ...(ii)
$$

For local maxima and local minima *d*^Z *dx* $= 0$

$$
\therefore \frac{1}{4} [8xr^2 - 4x^3] = 0 \implies x[2r^2 - x^2] = 0
$$

\n
$$
\Rightarrow \frac{2r^2 - x^2}{x^2 - 2r^2} = 0
$$

\n
$$
\Rightarrow \frac{x}{2r} = 2r^2 \implies x = \sqrt{2}r = AC
$$

Now from eq. (*i*) we have

$$
BC = \sqrt{4r^2 - 2r^2} \quad \Rightarrow BC = \sqrt{2r^2} \quad \Rightarrow BC = \sqrt{2r}
$$

 $So \t AC = BC$

 $\ddot{\cdot}$

Hence, \triangle ABC is an isosceles triangle.

Differentiating eq. (*ii*) w.r.t. *x*, we get 2 2 $\frac{d^2Z}{dx^2} = \frac{1}{4} [8r^2 - 12x^2]$ Put $x = \sqrt{2}r$

2 2 $rac{d^2Z}{dx^2}$ = $rac{1}{4}[8r^2 - 12 \times 2r^2]$ = $rac{1}{4}[8r^2 - 24r^2]$ $=\frac{1}{4} \times (-16r^2) = -4r^2 < 0$ maxima

Hence, the area of $\triangle ABC$ is maximum when it is an isosceles triangle.

- **Q33.** A metal box with a square base and vertical sides is to contain 1024 cm³. The material for the top and botttom costs $\bar{\tau}$ 5/cm² and the material for the sides costs $\bar{\xi}$ 2.50/cm². Find the least cost of the box.
- **Sol.** Let *x* be the side of the square base and *y* be the length of the vertical sides. Area of the base and bottom = $2x^2$ cm² \therefore Cost of the material required = \bar{z} 5 \times 2*x*² $= 7 10x^2$

Area of the 4 sides = $4xy$ cm²

 \therefore Cost of the material for the four sides

$$
= ₹2.50 \times 4xy = ₹10xy
$$

Total cost
$$
C = 10x^2 + 10xy
$$
...(i)
New volume of the box = $x \times x \times y$

$$
\Rightarrow 1024 = x^2y
$$

∴
$$
y = \frac{1024}{x^2}
$$
...(ii)

Putting the value of *y* in eq. (*i*) we get $C = 10x^2 + 10x \times \frac{1024}{x^2}$ *x* $+ 10x \times \frac{1024}{x^2}$ \Rightarrow C = $10x^2 + \frac{10240}{x}$ Differentiating both sides w.r.t. *x*, we get *d*C $\frac{dC}{dx}$ = 20*x* - $\frac{10240}{x^2}$ $-\frac{10240}{x^2}$...(*iii*) For local maxima and local minima $\frac{dC}{dx} = 0$ $20 - \frac{10240}{x^2} = 0$ \Rightarrow 20*x*³ – 10240 = 0 \Rightarrow *x*³ = 512 \Rightarrow *x* = 8 cm Now from eq. (*ii*) $y = \frac{10240}{(8)^2} = \frac{10240}{64} = 16$ cm $(8)^2$ 64 \therefore Cost of material used C = $10x^2 + 10xy$ $= 10 \times 8 \times 8 + 10 \times 8 \times 16 = 640 + 1280 = 1920$ Now differentiating eq. (*iii*) we get 2 2 d^2C $\frac{d^2C}{dx^2} = 20 + \frac{20480}{x^3}$ *x* + Put $x = 8$ $= 20 + \frac{20480}{(8)^3}$ $+\frac{20480}{(8)^3} = 20 + \frac{20480}{512} = 20 + 40 = 60 > 0$ minima

Hence, the required cost is $\bar{\tau}$ 1920 which is the minimum.

- **Q34.** The sum of the surface areas of a rectangular parallelopiped with sides *x*, 2*x* and $\frac{x}{3}$ and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if *x* is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.
- **Sol.** Let '*r*' be the radius of the sphere.
	- \therefore Surface area of the sphere = $4\pi r^2$ Volume of the sphere = $\frac{4}{2} \pi r^3$ $\frac{1}{3}$ πr The sides of the parallelopiped are *x*, 2*x* and $\frac{\pi}{3}$ *x* \therefore Its surface area = 2 $\left[x \times 2x + 2x \times \frac{x}{3} + x \times \frac{x}{3} \right]$ $\left[x \times 2x + 2x \times \frac{x}{3} + x \times \frac{x}{3}\right]$ = $2\left[2x^2 + \frac{2x^2}{3} + \frac{x^2}{3}\right]$ $\left[2x^2 + \frac{2x^2}{3} + \frac{x^2}{3}\right] = 2[2x^2 + x^2]$ $= 2[3x^2] = 6x^2$

Volume of the parallelopiped = $x \times 2x \times \frac{x}{3} = \frac{2}{3}x^3$ $x \times 2x \times \frac{x}{2} = \frac{2}{3}x$ As per the conditions of the question, Surface area of the parallelopiped + Surface area of the sphere = constant \Rightarrow 6*x*² + 4 πr^2 = K (constant) \Rightarrow 4 πr^2 = K – 6*x*² $r^2 = \frac{K - 6x^2}{4}$ 4 $-6x$ π ...(*i*) Now let $V =$ Volume of parallelopiped + Volume of the sphere $V = \frac{2}{3}x^3 + \frac{4}{3}\pi r^3$ $V = \frac{2}{3}x^3 + \frac{4}{3}\pi \left[\frac{K - 6x^2}{4}\right]^{3/2}$ 33 4 $x^3 + \frac{4}{3}\pi \left[\frac{K - 6x^2}{4\pi} \right]^{5/2}$ [from eq. (*i*)] ⇒ $V = \frac{2}{3}x^3 + \frac{4}{3}\pi \times \frac{1}{(4)^{3/2}\pi^{3/2}} [K - 6x^2]^{3/2}$ $V = \frac{2}{3}x^3 + \frac{4}{3}\pi \times \frac{1}{8 \times \pi^{3/2}} [K - 6x^2]^{3/2}$ $\frac{2}{3}x^3 + \frac{4}{3}\pi \times \frac{1}{8\times \pi^{3/2}}$ [K – 6x²] \Rightarrow $= \frac{2}{3}x^3 + \frac{1}{6\sqrt{\pi}}[K - 6x^2]^{3/2}$ π

Differentiating both sides w.r.t. *x*, we have

$$
\frac{dV}{dx} = \frac{2}{3} \cdot 3x^2 + \frac{1}{6\sqrt{\pi}} \left[\frac{3}{2} (K - 6x^2)^{1/2} (-12x) \right]
$$

$$
= 2x^2 + \frac{1}{6\sqrt{\pi}} \times \frac{3}{2} \times (-12x) (K - 6x^2)^{1/2}
$$

$$
= 2x^2 - \frac{3x}{\sqrt{\pi}} [K - 6x^2]^{1/2}
$$

For local maxima and local minima, we have $\frac{dV}{dx} = 0$

$$
\therefore \qquad 2x^2 - \frac{3x}{\sqrt{\pi}} (K - 6x^2)^{1/2} = 0
$$

$$
\Rightarrow \qquad 2\sqrt{\pi}x^2 - 3x(K - 6x^2)^{1/2} = 0
$$

$$
\Rightarrow \qquad x[2\sqrt{\pi}x - 3(K - 6x^2)^{1/2}] = 0
$$

Here $x \neq 0$ and $2\sqrt{\pi}x - 3(K - 6x^2)^{1/2} = 0$ \Rightarrow $2\sqrt{\pi}x = 3(K - 6x^2)^{1/2}$

$$
2\sqrt{\pi}x = 3(K - 6x^2)^{1/2}
$$

Squaring both sides, we get

$$
4\pi x^2 = 9(K - 6x^2) \implies 4\pi x^2 = 9K - 54x^2
$$

⇒
$$
4\pi x^2 + 54x^2 = 9K
$$

\n⇒ $K = \frac{4\pi x^2 + 54x^2}{9}$...(ii)
\n⇒ $2x^2(2\pi + 27) = 9K$
\n∴ $x^2 = \frac{9K}{2(2\pi + 27)} = 3\sqrt{\frac{K}{4\pi + 54}}$
\n $r^2 = \frac{K - 6x^2}{4\pi}$
\n⇒ $r^2 = \frac{\frac{4\pi x^2 + 54x^2 - 54x^2}{9 \times 4\pi} - 6x^2}{9 \times 4\pi}$
\n⇒ $r^2 = \frac{\frac{x^2}{9}}{9} \Rightarrow r = \frac{x}{3}$ ∴ $x = 3r$
\nNow we have $\frac{dV}{dx} = 2x^2 - \frac{3x}{\sqrt{\pi}}(K - 6x^2)^{1/2}$
\nDifferentiating both sides w.r.t. x , we get
\n $\frac{d^2V}{dx^2} = 4x - \frac{3}{\sqrt{\pi}} \left[x \cdot \frac{d}{dx} (K - 6x^2)^{1/2} + (K - 6x^2)^{1/2} \cdot \frac{d}{dx} \cdot x \right]$
\n $= 4x - \frac{3}{\sqrt{\pi}} \left[x \cdot \frac{1 \times (-12x)}{2\sqrt{K - 6x^2}} + (K - 6x^2)^{1/2} \cdot 1 \right]$
\n $= 4x - \frac{3}{\sqrt{\pi}} \left[\frac{-6x^2}{(K - 6x^2)^{1/2}} + (K - 6x^2)^{1/2} \right]$
\n $= 4x - \frac{3}{\sqrt{\pi}} \left[\frac{-6x^2 + K - 6x^2}{(K - 6x^2)^{1/2}} \right] = 4x - \frac{3}{\sqrt{\pi}} \left[\frac{K - 12x^2}{(K - 6x^2)^{1/2}} \right]$
\nPut $x = 3 \cdot \sqrt{\frac{K}{4\pi + 54}}$
\n $\frac{d^2V}{dx^2} = 4 \cdot 3 \sqrt{\frac{K}{4\pi + 54}} - \frac{3}{\sqrt{\pi}} \left[\frac{K - 12 \cdot \frac{9K$

$$
= 12\sqrt{\frac{K}{4\pi + 54}} - \frac{3}{\sqrt{\pi}} \frac{\frac{4K\pi + 54K - 108K}{4\pi + 54}}{\sqrt{\frac{4K\pi + 54K - 54K}{4\pi + 54}}}
$$

$$
= 12\sqrt{\frac{K}{4\pi + 54}} - \frac{3}{\sqrt{\pi}} \left[\frac{\frac{4K\pi - 54K}{4\pi + 54}}{\sqrt{\frac{4K\pi}{4\pi + 54}}} \right]
$$

$$
= 12\sqrt{\frac{K}{4\pi + 54}} - \frac{3}{\sqrt{\pi}} \left[\frac{4K\pi - 54K}{\sqrt{4K\pi} \cdot \sqrt{4\pi + 54}} \right]
$$

$$
= 12\sqrt{\frac{K}{4\pi + 54}} - \frac{6K}{\sqrt{\pi}} \left(\frac{2\pi - 27}{\sqrt{4K\pi} \cdot \sqrt{4\pi + 54}} \right)
$$

$$
= 12\sqrt{\frac{K}{4\pi + 54}} + \frac{6K}{\sqrt{\pi}} \left[\frac{27 - 2\pi}{\sqrt{4K\pi} \cdot \sqrt{4\pi + 54}} \right] > 0
$$

$$
\left[\because 27 - 2\pi > 0 \right]
$$

 \therefore $\frac{d^2V}{dx^2} > 0$ so, it is minima. *dx*

Hence, the sum of volume is minimum for $x = 3 \sqrt{\frac{K}{4\pi + 54}}$ \therefore Minimum volume,

$$
\begin{aligned} \nabla \text{ at } \left(x = 3 \sqrt{\frac{K}{4\pi + 54}} \right) &= \frac{2}{3} x^3 + \frac{4}{3} \pi r^3 = \frac{2}{3} x^3 + \frac{4}{3} \pi \cdot \left(\frac{x}{3} \right)^3 \\ \n&= \frac{2}{3} x^3 + \frac{4}{3} \pi \cdot \frac{x^3}{27} = \frac{2}{3} x^3 + \frac{4}{81} \pi x^3 \\ \n&= \frac{2}{3} x^3 \left(1 + \frac{2\pi}{27} \right) \\ \n\text{Hence, the required minimum volume is } \frac{2}{3} x^3 \left(1 + \frac{2\pi}{27} \right) \text{ and } \\ \nx &= 3r. \n\end{aligned}
$$

OBJECTIVE TYPE QUESTIONS

Choose the correct answer from the given four options in each of the following questions 35 to 59:

Q35. The sides of an equilateral triangle are increasing at the rate of 2 cm/sec. The rate at which the area increases, when side is 10 cm is:

(a) $10 \text{ cm}^2/\text{s}$ (b) $\sqrt{3} \text{ cm}^2/\text{s}$

(c)
$$
10\sqrt{3}
$$
 cm²/s (d) $\frac{10}{3}$ cm²/s

Sol. Let the length of each side of the given equilateral triangle be *x* cm.

$$
\frac{dx}{dt} = 2 \text{ cm/sec}
$$

Area of equilateral triangle A = $\frac{\sqrt{3}}{4}x^2$
∴ $\frac{dA}{dt} = \frac{\sqrt{3}}{4} \cdot 2x \cdot \frac{dx}{dt} = \frac{\sqrt{3}}{2} \times 10 \times 2 = 10\sqrt{3} \text{ cm}^2/\text{sec}$
Hence, the rate of increasing of area = $10\sqrt{3} \text{ cm}^2/\text{sec}$.
Hence, the correct option is (c).
Q36. Aladder, 5 m long, standing on a horizontal floor, leans against a vertical wall. If the top of the ladder slides downwards at the rate of 10 cm/sec, then the rate at which the angle between the floor and the ladder is decreasing when lower end of ladder

is 2 metres from the wall is:

Now
$$
\cos \theta = \frac{BC}{AC}
$$

\n $\Rightarrow \qquad \cos \theta = \frac{x}{5}$

 $(\theta \text{ is in radian})$

Differentiating both sides w.r.t. *t*, we get

$$
\frac{d}{dt}\cos\theta = \frac{1}{5}\cdot\frac{dx}{dt} \Rightarrow -\sin\theta\cdot\frac{d\theta}{dt} = \frac{1}{5}\cdot\frac{\sqrt{21}}{20}
$$
\n
$$
\Rightarrow \qquad \frac{d\theta}{dt} = \frac{\sqrt{21}}{100} \times \left(-\frac{1}{\sin\theta}\right) = \frac{\sqrt{21}}{100} \times \left(-\frac{1}{\frac{AB}{AC}}\right)
$$
\n
$$
= -\frac{\sqrt{21}}{100} \times \frac{AC}{AB} = -\frac{\sqrt{21}}{100} \times \frac{5}{\sqrt{21}} = -\frac{1}{20} \text{ radian/sec}
$$

[(–) sign shows the decrease of change of angle]

Hence, the required rate =
$$
\frac{1}{20}
$$
 radian/sec

- Hence, the correct option is (*b*).
- **Q37.** The curve $y = x^{1/5}$ has at (0, 0)
	- (*a*) a vertical tangent (parallel to *y*-axis)
	- (*b*) a horizontal tangent (parallel to *x*-axis)
	- (*c*) an oblique tangent
	- (*d*) no tangent

Sol. Equation of curve is $y = x^{1/5}$

Differentiating w.r.t. *x*, we get
$$
\frac{dy}{dx} = \frac{1}{5}x^{-4/5}
$$

$$
\begin{aligned} \text{(at } x = 0) \qquad \qquad \frac{dy}{dx} &= \frac{1}{5}(0)^{-4/5} = \frac{1}{5} \times \frac{1}{0} = \infty \\ \frac{dy}{dx} &= \infty \end{aligned}
$$

\ The tangent is parallel to *y*-axis.

Hence, the correct option is (*a*).

- **Q38.** The equation of normal to the curve $3x^2 y^2 = 8$ which is parallel to the line $x + 3y = 8$ is
	- (*a*) $3x y = 8$ (*b*) $3x + y + 8 = 0$

(c)
$$
x + 3y \pm 8 = 0
$$

 (d) $x + 3y = 0$

Sol. Given equation of the curve is $3x^2 - y^2 = 8$...(*i*) Differentiating both sides w.r.t. *x*, we get

$$
6x - 2y \cdot \frac{dy}{dx} = 0 \implies \frac{dy}{dx} = \frac{3x}{y}
$$

3*x y* is the slope of the tangent \therefore Slope of the normal = $\frac{-1}{dy/dx} = \frac{-}{3}$ *y dy dx x* Now $x + 3y = 8$ is parallel to the normal Differentiating both sides w.r.t. *x*, we have $1+3 \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = -\frac{1}{3}$ 3 $\frac{dy}{dx} = \ddot{\cdot}$ 1 $3x \quad 3$ *y* $\frac{-y}{3x} = -\frac{1}{3}$ \Rightarrow $y = x$ Putting $y = x$ in eq. (*i*) we get $3x^2 - x^2 = 8$ $\implies 2x^2 = 8$ $\implies x^2 = 4$ \therefore $x = \pm 2$ and $y = \pm 2$ So the points are $(2, 2)$ and $(-2, -2)$. Equation of normal to the given curve at (2, 2) is $y-2 = -\frac{1}{3}(x-2)$ \Rightarrow $3y-6=-x+2 \Rightarrow x+3y-8=0$ Equation of normal at $(-2, -2)$ is $y + 2 = -\frac{1}{3}(x + 2)$ \Rightarrow $3y + 6 = -x - 2 \Rightarrow x + 3y + 8 = 0$ \therefore The equations of the normals to the curve are $x + 3y \pm 8 = 0$ Hence, the correct option is (*c*). **Q39.** If the curve $ay + x^2 = 7$ and $x^3 = y$, cut orthogonally at (1, 1), then the value of '*a*' is: (*a*) 1 (*b*) 0 (*c*) – 6 (*d*) 6 **Sol.** Equation of the given curves are $ay + x^2 = 7$...(*i*) and $x^3 = y$...(*ii*) Differentiating eq. (*i*) w.r.t. *x*, we have $a \frac{dy}{dx} + 2x = 0 \Rightarrow \frac{dy}{dx} = -\frac{2x}{a}$ \therefore $m_1 = -\frac{2x}{a}$ $\left(m_1\right)$ $\left(m_1 = \frac{dy}{dx}\right)$ Now differentiating eq. (*ii*) w.r.t. *x*, we get $3x^2 = \frac{dy}{dx}$ \Rightarrow $m_2 = 3x^2$ $\left(m_2\right)$ $\left(m_2 = \frac{dy}{dx}\right)$

The two curves are said to be orthogonal if the angle between the tangents at the point of intersection is 90°.

 \therefore $m_1 \times m_2 = -1$ $\Rightarrow \frac{-2x}{a} \times 3x^2 = -1 \Rightarrow$ $6x^3$ $\frac{-6x^3}{a} = -1 \implies 6x^3 = a$ (1, 1) is the point of intersection of two curves. \therefore 6(1)³ = *a* So $a = 6$ Hence, the correct option is (*d*). **Q40.** If $y = x^4 - 10$ and if *x* changes from 2 to 1.99, what is the change in *y*? (*a*) 0.32 (*b*) 0.032 (*c*) 5.68 (*d*) 5.968 **Sol.** Given that $y = x^4 - 10$ $\frac{dy}{dx}$ = 4*x*³ $\Delta x = 2.00 - 1.99 = 0.01$ \therefore $\Delta y = \frac{dy}{dx} \cdot \Delta x = 4x^3 \times \Delta x$ $= 4 \times (2)^3 \times 0.01 = 32 \times 0.01 = 0.32$ Hence, the correct option is (*a*). **Q41.** The equation of tangent to the curve $y(1 + x^2) = 2 - x$, where it crosses *x*-axis is: (*a*) *x* + 5*y* = 2 (*b*) *x* – 5*y* = 2 (*c*) 5*x* – *y* = 2 (*d*) 5*x* + *y* = 2 **Sol.** Given that $y(1 + x^2) = 2 - x$...(*i*) If it cuts *x*-axis, then *y*-coordinate is 0. \therefore 0(1 + *x*²) = 2 – *x* \Rightarrow *x* = 2 Put $x = 2$ in equation (*i*) $y(1 + 4) = 2 - 2 \implies y(5) = 0 \implies y = 0$ Point of contact $=(2, 0)$ Differentiating eq. (*i*) w.r.t. *x*, we have $y \times 2x + (1 + x^2) \frac{dy}{dx} = -1$ \Rightarrow 2*xy* + (1 + *x*²) $\frac{dy}{dx}$ = -1 \Rightarrow (1 + *x*²) $\frac{dy}{dx}$ = -1 - 2*xy* $\therefore \quad \frac{dy}{dx} = \frac{-(1+2x)}{(1+x^2)}$ $(1 + 2xy)$ $(1 + x^2)$ *xy x* $- (1 +$ $\frac{dy}{(x^2 + x^2)}$ $\Rightarrow \frac{dy}{dx}$
(2,0) $\frac{dy}{dx_{(2,0)}} = \frac{-1}{(1+4)} = \frac{-1}{5}$ Equation of tangent is $y - 0 = -\frac{1}{5}(x - 2)$ \Rightarrow $5y = -x + 2 \Rightarrow x + 5y = 2$ Hence, the correct option is (a).

Q42. The points at which the tangents to the curve $y = x^3 - 12x + 18$ are parallel to *x*-axis are: (*a*) (2, – 2), (– 2, – 34) (*b*) (2, 34), (– 2, 0) (*c*) $(0, 34)$, $(-2, 0)$ (*d*) $(2, 2)$, $(-2, 34)$ **Sol.** Given that $y = x^3 - 12x + 18$ Differentiating both sides w.r.t. *x*, we have \Rightarrow $\frac{dy}{dx} = 3x^2 - 12$ Since the tangents are parallel to *x*-axis, then $\frac{dy}{dx} = 0$ \therefore $3x^2 - 12 = 0 \Rightarrow x = \pm 2$ \therefore $y_{x=2} = (2)^3 - 12(2) + 18 = 8 - 24 + 18 = 2$ $y_{x=-2} = (-2)^3 - 12 (-2) + 18 = -8 + 24 + 18 = 34$ \therefore Points are (2, 2) and (–2, 34) Hence, the correct option is (d). **Q43.** The tangent to the curve $y = e^{2x}$ at the point (0, 1) meets *x*-axis at: (*a*) (0, 1) (*b*) $\left(-\frac{1}{2}, 0\right)$ (*c*) (2, 0) (*d*) (0, 2) **Sol.** Equation of the curve is $y = e^{2x}$ Slope of the tangent $\frac{dy}{dx} = 2e^{2x} \implies \frac{dy}{dx}_{(0,1)}$ $\frac{dy}{dx}$ _(0,1) = 2 · e^0 = 2 \therefore Equation of tangent to the curve at $(0, 1)$ is $y - 1 = 2(x - 0)$ \Rightarrow $y-1=2x$ \Rightarrow $y-2x=1$ Since the tangent meets *x*-axis where $y = 0$ \therefore 0 – 2*x* = 1 \Rightarrow *x* = $\frac{-1}{2}$ $x = \frac{-1}{2}$ So the point is $\left(-\frac{1}{2}, 0 \right)$ Hence, the correct option is (b). **Q44.** The slope of tangent to the curve $x = t^2 + 3t - 8$ and $y = 2t^2 - 2t - 5$ at the point $(2, -1)$ is: (*a*) $\frac{22}{7}$ (*b*) $\frac{6}{7}$ (*c*) $-\frac{6}{7}$ (*d*) -6 **Sol.** The given curve is $x = t^2 + 3t - 8$ and $y = 2t^2 - 2t - 5$ *dx* $\frac{dx}{dt} = 2t + 3$ and $\frac{dy}{dt} = 4t - 2$ \therefore $\frac{dy}{dx} = \frac{\overline{dt}}{\overline{dx}} = \frac{4t - 2}{2t + 3}$ *dy* \overline{dt} $=$ $\frac{4t}{t}$ $\frac{\overline{dt}}{dx} = \frac{4t - 1}{2t + 1}$

dt

Now $(2, -1)$ lies on the curve \therefore $2 = t^2 + 3t - 8 \implies t^2 + 3t - 10 = 0$ \implies $t^2 + 5t - 2t - 10 = 0$ \implies $t(t+5) - 2(t+5) = 0$ \implies $(t + 5) (t - 2) = 0$ \therefore *t* = 2, *t* = – 5 and –1 = 2*t*² – 2*t* – 5 $2t^2 - 2t - 4 = 0$ $t^2 - t - 2 = 0 \implies t^2 - 2t + t - 2 = 0$ \Rightarrow $t(t-2) + 1(t-2) = 0 \Rightarrow (t+1)(t-2) = 0$ \Rightarrow $t = -1$ and $t = 2$ So $t = 2$ is common value \therefore Slope $x=2$ *dy* $rac{dy}{dx_{x=2}} = \frac{4 \times 2 - 2}{2 \times 2 + 3} = \frac{6}{7}$ $2 \times 2 + 3$ 7 Hence, the correct option is (b). **Q45.** The two curves $x^3 - 3xy^2 + 2 = 0$ and $3x^2y - y^3 - 2 = 0$ intersect at an angle of: (a) $\frac{\pi}{4}$ $\frac{\pi}{4}$ (*b*) $\frac{\pi}{3}$ (*c*) $\frac{\pi}{2}$ (*d*) $\frac{\pi}{6}$ **Sol.** The given curves are $x^3 - 3xy^2 + 2 = 0$...(*i*) and $3x^2y - y^3 - 2 = 0$...(*ii*) Differentiating eq. (*i*) w.r.t. *x*, we get $3x^2 - 3\left(x \cdot 2y \frac{dy}{dx} + y^2 \cdot 1\right) = 0$ \Rightarrow $x^2 - 2xy \frac{dy}{dx} - y^2 = 0 \Rightarrow 2xy \frac{dy}{dx} = x^2 - y^2$ \therefore $\frac{dy}{dx}$ = 2² 2 $x^2 - y$ *xy* - So slope of the curve 2 1,2 2 $x^2 - y$ *xy* - Differentiating eq. (*ii*) w.r.t. *x*, we get $3\left[x^2 \frac{dy}{dx} + y \cdot 2x\right] - 3y^2 \cdot \frac{dy}{dx} = 0$ $x^2 \frac{dy}{dx} + 2xy - y^2 \frac{dy}{dx} = 0 \implies (x^2 - y^2) \frac{dy}{dx} = -2xy$ \therefore $\frac{dy}{dx} = \frac{-2xy}{x^2 - y^2}$ 2*xy* $x^2 - y$ - -

So the slope of the curve
$$
m_2 = \frac{-2xy}{x^2 - y^2}
$$

\nNow $m_1 \times m_2 = \frac{x^2 - y^2}{2xy} \times \frac{-2xy}{x^2 - y^2} = -1$
\nSo the angle between the curves is $\frac{\pi}{2}$.
\nHence, the correct option is (c).
\nQ46. The interval on which the function $f(x) = 2x^3 + 9x^2 + 12x - 1$ is decreasing is:
\n(a) $[-1, \infty)$ (b) $[-2, -1]$
\n(c) $(-\infty, -2]$ (d) $[-1, 1]$
\n**Sol.** The given function is $f(x) = 2x^3 + 9x^2 + 12x - 1$
\n $f'(x) = 6x^2 + 18x + 12$
\nFor increasing and decreasing $f'(x) = 0$
\n \therefore $6x^2 + 18x + 12 = 0$
\n \Rightarrow $x^2 + 3x + 2 = 0 \Rightarrow x^2 + 2x + x + 2 = 0$
\n \Rightarrow $x(x + 2) + 1(x + 2) = 0 \Rightarrow (x + 2)(x + 1) = 0$
\n \Rightarrow $x = -2, x = -1$
\nThe possible intervals are $(-\infty, -2), (-2, -1), (-1, \infty)$
\nNow $f'(x) = (x + 2)(x + 1)$
\n \Rightarrow $f'(x) = (x + 2)(x + 1)$
\n \Rightarrow $f'(x) = (x + 2)(x + 1)$
\n \Rightarrow $f'(x) = (x + 2)(x + 1)$
\n \Rightarrow $f'(x) = (x + 2)(x + 1)$
\nNow $f'(x) = (x + 2)(x + 1)$
\n \Rightarrow $f'(x) = (x + 2)(x + 1)$
\n \Rightarrow $f'(x) = (x + 2)(x + 1)$
\n \Rightarrow $f'(x) = (x + 2)(x + 1)$
\n**Q47.** Let the f: **R**

For increasing and decreasing $\frac{dy}{dx} = 0$ \therefore 2*x*(*x* – 3) + (*x* – 3)² = 0 \Rightarrow (*x* – 3) (2*x* + *x* – 3) = 0 \Rightarrow $(x-3)(3x-3) = 0 \Rightarrow 3(x-3)(x-1) = 0$ \therefore $x = 1, 3$ \therefore Possible intervals are $(-\infty, 1)$, $(1, 3)$, $(3, \infty)$ $\frac{dy}{dx} = (x - 3)(x - 1)$ For $(-\infty, 1) = (-) (-) = (+)$ increasing For $(1, 3) = (-) (+) = (-)$ decreasing For $(3, \infty) = (+) (+) = (+)$ increasing So the function decreases in $(1, 3)$ or $1 \le x \le 3$ Hence, the correct option is (*a*). **Q49.** The function $f(x) = 4 \sin^3 x - 6 \sin^2 x + 12 \sin x + 100$ is strictly (*a*) increasing in $\left(\pi, \frac{3\pi}{2}\right)$ (*b*) decreasing in $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ $\left(\frac{\pi}{2},\pi\right)$ (*c*) decreasing in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (*d*) decreasing in $\left[0, \frac{\pi}{2}\right]$ $f(x) = 4 \sin^3 x - 6 \sin^2 x + 12 \sin x + 100$ $f'(x) = 12 \sin^2 x \cdot \cos x - 12 \sin x \cos x + 12 \cos x$ $= 12 \cos x [\sin^2 x - \sin x + 1]$ $= 12 \cos x$ $[\sin^2 x + (1 - \sin x)]$ \therefore 1 – sin $x \ge 0$ and sin² $x \ge 0$ \therefore $\sin^2 x + 1 - \sin x \ge 0$ (when $\cos x > 0$) Hence, $f'(x) > 0$, when cos $x > 0$ i.e., $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ So, *f*(*x*) is increasing where $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ and $f'(x) < 0$ when $\cos x < 0$ i.e. $x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ Hence, $f(x)$ is decreasing when $x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ As $\left(\frac{\pi}{2}, \pi\right) \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ $\left(\frac{\pi}{2},\pi\right) \in \left(\frac{\pi}{2},\frac{3\pi}{2}\right)$ So $f(x)$ is decreasing in $\left(\frac{\pi}{2},\right)$ $\left(\frac{\pi}{2},\pi\right)$ Hence, the correct option is (*b*).

Q50. Which of the following functions is decreasing in $\left(0, \frac{\pi}{2}\right)$? $\binom{6}{2}$ (*a*) $\sin 2x$ (*b*) $\tan x$ (*c*) $\cos x$ (*d*) $\cos 3x$ **Sol.** Here, Let $f(x) = \cos x$; So, $f'(x) = -\sin x$ $f'(x) < 0$ in $\left(0, \frac{\pi}{2}\right)$ $\binom{6}{2}$ So $f(x) = \cos x$ is decreasing in $\left(0, \frac{\pi}{2}\right)$ So $f(x) = \cos x$ is domen-
Hence, the correct option is (c) . **Q51.** The function $f(x) = \tan x - x$ (*a*) always increases (*b*) always decreases (*c*) never increases (*d*) sometimes increases and sometimes decreases. **Sol.** Here, $f(x) = \tan x - x$ So, $f'(x) = \sec^2 x - 1$ $f'(x) > 0 \ \forall \ x \in R$ So $f(x)$ is always increasing Hence, the correct option is (*a*). **Q52.** If *x* is real, the minimum value of $x^2 - 8x + 17$ is (*a*) – 1 (*b*) 0 (*c*) 1 (*d*) 2 **Sol.** Let $f(x) = x^2 - 8x + 17$ $f'(x) = 2x - 8$ For local maxima and local minima, $f'(x) = 0$ $\therefore \hspace{1cm} 2x - 8 = 0 \Rightarrow x = 4$ So, $x = 4$ is the point of local maxima and local minima. $f''(x) = 2 > 0$ minima at $x = 4$ \therefore $f(x)_{x=4} = (4)^2 - 8(4) + 17$ $= 16 - 32 + 17 = 33 - 32 = 1$ So the minimum value of the function is 1 Hence, the correct option is (*c*). **Q53.** The smallest value of the polynomial $x^3 - 18x^2 + 96x$ in [0, 9] is: (*a*) 126 (*b*) 0 (*c*) 135 (*d*) 160 **Sol.** Let $f(x) = x^3 - 18x^2 + 96x$; So, $f'(x) = 3x^2 - 36x + 96$ For local maxima and local minima $f'(x) = 0$ \therefore $3x^2 - 36x + 96 = 0$ $\Rightarrow x^2 - 12x + 32 = 0 \Rightarrow x^2 - 8x - 4x + 32 = 0$ \Rightarrow $x(x-8) - 4(x-8) = 0 \Rightarrow (x-8) (x-4) = 0$ \therefore $x = 8, 4 \in [0, 9]$ So, *x* = 4, 8 are the points of local maxima and local minima. Now we will calculate the absolute maxima or absolute minima at *x* = 0, 4, 8, 9 \therefore $f(x)= x^3 - 18x^2 + 96x$ $f(x)_{x=0} = 0 - 0 + 0 = 0$

 $f(x)_{x=4} = (4)^3 - 18(4)^2 + 96(4)$ $= 64 - 288 + 384 = 448 - 288 = 160$ $f(x)_{x=8} = (8)^3 - 18(8)^2 + 96(8)$ $= 512 - 1152 + 768 = 1280 - 1152 = 128$ $f(x)_{x=9} = (9)^3 - 18(9)^2 + 96(9)$ $= 729 - 1458 + 864 = 1593 - 1458 = 135$ So, the absolute minimum value of f is 0 at $x = 0$ Hence, the correct option is (*b*). **Q54.** The function $f(x) = 2x^3 - 3x^2 - 12x + 4$, has (*a*) two points of local maximum (*b*) two points of local minimum (*c*) one maxima and one minima (*d*) no maxima or minima **Sol.** We have $f(x) = 2x^3 - 3x^2 - 12x + 4$ $f'(x) = 6x^2 - 6x - 12$ For local maxima and local minima $f'(x) = 0$ \therefore 6*x*² – 6*x* – 12 = 0 $x^2 - x - 2 = 0 \implies x^2 - 2x + x - 2 = 0$ $\Rightarrow x(x-2) + 1(x-2) = 0 \Rightarrow (x+1)(x-2) = 0$ \Rightarrow $x = -1$, 2 are the points of local maxima and local minima Now $f''(x) = 12x - 6$ $f''(x)_{x=-1} = 12(-1) - 6 = -12 - 6 = -18 < 0$, maxima $f''(x)_{x=2} = 12(2) - 6 = 24 - 6 = 18 > 0$ minima So, the function is maximum at $x = -1$ and minimum at $x = 2$ Hence, the correct option is (*c*). **Q55.** The maximum value of sin *x* cos *x* is (*a*) $\frac{1}{4}$ $\frac{1}{4}$ (*b*) $\frac{1}{2}$ (*c*) $\sqrt{2}$ (*d*) $2\sqrt{2}$ **Sol.** We have $f(x) = \sin x \cos x$ $f(x) = \frac{1}{2} \cdot 2 \sin x \cos x = \frac{1}{2} \sin 2x$ $f'(x) = \frac{1}{2} \cdot 2 \cos 2x$ $f'(x) = \cos 2x$ Now for local maxima and local minima $f'(x) = 0$ $\therefore \cos 2x = 0$ $2x = (2n+1)\frac{\pi}{2}, \quad n \in \mathbb{I}$ \Rightarrow $x = (2n+1) \frac{\pi}{4}$

..
$$
x = \frac{\pi}{4}, \frac{3\pi}{4}...
$$

\n $f''(x) = -2 \sin 2x$
\n $f''(x) = -2 \sin 2 \cdot \frac{\pi}{4} = -2 \sin \frac{\pi}{2} = -2 < 0$ maxima
\n $f''(x) = \frac{3\pi}{4} = -2 \sin 2 \cdot \frac{3\pi}{4} = -2 \sin \frac{3\pi}{2} = 2 > 0$ minima
\nSo $f(x)$ is maximum at $x = \frac{\pi}{4}$
\n.. Maximum value of $f(x) = \sin \frac{\pi}{4} \cdot \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{1}{2}$
\nHence, the correct option is (b).
\nQ56. At $x = \frac{5\pi}{6}, f(x) = 2 \sin 3x + 3 \cos 3x$ is:
\n(a) maximum (b) minimum
\n(c) zero (d) neither maximum nor minimum.
\nSol. We have $f(x) = 2 \sin 3x + 3 \cos 3x$
\n $f'(x) = 2 \cos 3x \cdot 3 - 3 \sin 3x \cdot 3 = 6 \cos 3x - 9 \sin 3x$
\n $f''(x) = -6 \sin 3x \cdot 3 - 9 \cos 3x \cdot 3$
\n $= -18 \sin 3x - 27 \cos 3x$
\n $f''\left(\frac{5\pi}{6}\right) = -18 \sin 3\left(\frac{5\pi}{6}\right) - 27 \cos \left(\frac{5\pi}{2}\right)$
\n $= -18 \sin \left(2\pi + \frac{\pi}{2}\right) - 27 \cos \left(2\pi + \frac{\pi}{2}\right)$
\n $= -18 \sin \frac{\pi}{2} - 27 \cos \frac{\pi}{2} = -18 \cdot 1 - 27 \cdot 0$
\n $= 18 \sin \frac{\pi}{2} - 27 \cos \frac{\pi}{2} = -18 \cdot 1 - 27 \cdot 0$
\n $= 18 \sin \frac{\pi}{2} - 27 \cos \frac{\pi}{2} = -18 \cdot 1 - 27 \cdot 0$
\n $= 18 \sin \frac{\pi}{2} - 27 \$

Hence, the correct option is (a).

Q57. Maximum slope of the curve
$$
y = -x^3 + 3x^2 + 9x - 27
$$
 is:
\n(a) 0 (b) 12 (c) 16 (d) 32
\n**Sol.** Given that $y = -x^3 + 3x^2 + 9x - 27$

$$
\frac{dy}{dx} = -3x^2 + 6x + 9
$$

\n∴ Slope of the given curve,
\n $m = -3x^2 + 6x + 9$ $\left(\frac{dy}{dx} = m\right)$
\n $\frac{dm}{dx} = -6x + 6$ $\left(\frac{dy}{dx} = m\right)$
\nFor local maxima and local minima, $\frac{dm}{dx} = 0$
\n∴ $-6x + 6 = 0 \Rightarrow x = 1$
\nNow $\frac{d^2m}{dx^2} = -6 < 0$ maxima
\n∴ Maximum value of the slope at $x = 1$ is
\n $m_{x=1} = -3(1)^2 + 6(1) + 9 = -3 + 6 + 9 = 12$
\nHence, the correct option is (b).
\nQ58. $f(x) = x^x$ has a stationary point at
\n(a) $x = e$ (b) $x = \frac{1}{e}$ (c) $x = 1$ (d) $x = \sqrt{e}$
\nSol. We have $f(x) = x^x$
\nTaking log of both sides, we have
\n $\log f(x) = x \log x$
\nDifferentiating both sides w.r.t. x , we get
\n $\frac{1}{f(x)}$ · $f'(x) = x \cdot \frac{1}{x} + \log x \cdot 1$
\n⇒ $f'(x) = f(x) [1 + \log x] = x^x [1 + \log x]$
\nTo find stationary point, $f'(x) = 0$
\n∴ $x^x[1 + \log x] = 0$
\n $x^x \ne 0$ ∴ $1 + \log x = 0$
\n⇒ $\log x = -1 \Rightarrow x = e^{-1} \Rightarrow x = \frac{1}{e}$
\nHence, the correct option is (b).
\nQ59. The maximum value of $\left(\frac{1}{x}\right)^x$ is:
\n(a) e (b) e^e (c) $e^{1/e}$ (d) $\left(\frac{1}{e}\right)^{1/e}$
\nSol. Let $f(x) = \left(\frac{1}{x}\right)^x$
\nTaking log on both sides, we get
\n $\log [f(x)] = x \log \frac{$

Differentiating both sides w.r.t. *x*, we get $\frac{1}{f(x)} \cdot f'(x) = -\left[x \cdot \frac{1}{x} + \log x \cdot 1\right] = -f(x) [1 + \log x]$ $f'(x) = -\left(\frac{1}{x}\right)^{x} [1 + \log x]$ $-\left(\frac{1}{x}\right)^{x}$ [1 + log x For local maxima and local minima $f'(x) = 0$ $\left(\frac{1}{2} \right)^{x} [1 + \log x]$ $-\left(\frac{1}{x}\right)^{x} [1 + \log x] = 0 \Rightarrow \left(\frac{1}{x}\right)^{x} [1 + \log x]$ $\left(\frac{1}{x}\right)^{x}$ [1 + log x] = 0 $\left(\frac{1}{x}\right)^x \neq 0$ $\left(\frac{1}{x}\right)^{x} \neq$ $1 + \log x = 0 \Rightarrow \log x = -1 \Rightarrow x = e^{-1}$ So, $x = \frac{1}{e}$ is the stationary point. Now $f'(x) = -\left(\frac{1}{x}\right)^{x} [1 + \log x]$ $-\left(\frac{1}{x}\right)^{x}$ [1 + log x $f''(x) = -\left[\left(\frac{1}{x}\right)^x \left(\frac{1}{x}\right) + (1 + \log x) \cdot \frac{d}{dx}(x)^x\right]$ $f''(x) =$ $-\left[(e)^{1/e} (e) + \left(1 + \log \frac{1}{e} \right) \frac{d}{dx} \left(\frac{1}{e} \right)^{1/e} \right]$ $x = \frac{1}{e}$ $\frac{1}{2}$ 1 0 *^e* - < *e* maxima \therefore Maximum value of the function at $x = \frac{1}{e}$ is $f\left(\frac{1}{e}\right) = \left(\frac{1}{1/e}\right)^{1/e} = e^{1/e}$ 1/ $\left(\frac{1}{1/e}\right)^{1/e} = e^{1/e}$

Hence, the correct option is (*c*).

Fill in the blanks in each of the following exercises 60 to 64.

Q60. The curves $y = 4x^2 + 2x - 8$ and $y = x^3 - x + 13$ touch each other at the point .

Sol. We have

$$
y = 4x^2 + 2x - 8 \qquad \dots(i)
$$

and
$$
y = x^3 - x + 13
$$
 ...(ii)

Differentiating eq. (*i*) w.r.t. *x*, we have

$$
\frac{dy}{dx} = 8x + 2 \implies m_1 = 8x + 2
$$

[*m* is the slope of curve (*i*)]

Differentiating eq. (*ii*) w.r.t. *x*, we get $\frac{dy}{dx}$ = 3*x*² – 1 \Rightarrow *m*₂ = 3*x*² – 1 $[m_2]$ is the slope of curve $(ii)]$ If the two curves touch each other, then $m_1 = m_2$ \therefore $8x + 2 = 3x^2 - 1$ $3x^2 - 8x - 3 = 0 \implies 3x^2 - 9x + x - 3 = 0$ \Rightarrow $3x(x-3) + 1(x-3) = 0 \Rightarrow (x-3) (3x + 1) = 0$ \therefore $x = 3, \frac{-1}{2}$ 3 - Putting $x = 3$ in eq. (*i*), we get $y = 4(3)^2 + 2(3) - 8 = 36 + 6 - 8 = 34$ So, the required point is (3, 34) Now for $x = -\frac{1}{3}$ $y = 4\left(\frac{-1}{3}\right)^2 + 2\left(\frac{-1}{3}\right) - 8 = 4 \times \frac{1}{9} - \frac{2}{3} - 8$ $=\frac{4}{9} - \frac{2}{3} - 8 = \frac{4 - 6 - 72}{9} = \frac{-74}{9}$ \therefore Other required point is $\left(-\frac{1}{3}, \frac{-74}{9}\right)$. Hence, the required points are (3, 34) and $\left(-\frac{1}{3}, \frac{-74}{9}\right)$. **Q61.** The equation of normal to the curve $y = \tan x$ at (0, 0) is . **Sol.** We have $y = \tan x$. So, $\frac{dy}{dx} = \sec^2 x$ \therefore Slope of the normal = $\frac{-1}{\cos^2 x} = -\cos^2 x$ $\frac{1}{2}$ = $-\cos$ sec *x x* $\frac{-1}{2}$ = at the point $(0, 0)$ the slope = $-\cos^2(0) = -1$ So the equation of normal at $(0, 0)$ is $y - 0 = -1(x - 0)$ \Rightarrow $y = -x \Rightarrow y + x = 0$ Hence, the required equation is $y + x = 0$. **Q62.** The values of *a* for which the function $f(x) = \sin x - ax + b$ increases on **R** are \equiv **Sol.** We have $f(x) = \sin x - ax + b$ $\Rightarrow f'(x) = \cos x - a$ For increasing the function $f'(x) > 0$ \therefore cos $x - a > 0$ Since $\cos x \in [-1, 1]$

$$
a < -1 \Rightarrow a \in (-\infty, -1)
$$

\nHence, the value of *a* is $(-\infty, -1)$.
\nQ63. The function $f(x) = \frac{2x^2 - 1}{x^4}$, $x > 0$, decreases in the interval
\n**So**0. We have $f(x) = \frac{2x^2 - 1}{x^4}$
\n
$$
f'(x) = \frac{x^4(4x) - (2x^2 - 1) \cdot 4x^3}{x^8}
$$
\n
$$
\Rightarrow f'(x) = \frac{4x^5 - (2x^2 - 1) \cdot 4x^3}{x^8} = \frac{4x^3[x^2 - 2x^2 + 1]}{x^8} = \frac{4(-x^2 + 1)}{x^5}
$$
\nFor decreasing the function $f'(x) < 0$
\n∴ $\frac{4(-x^2 + 1)}{x^5} < 0 \Rightarrow -x^2 + 1 < 0 \Rightarrow x^2 > 1$
\n∴ $x > \pm 1 \Rightarrow x \in (1, \infty)$
\nQ64. The least value of the function $f(x) = ax + \frac{b}{x}$ (where $a > 0$, $b > 0, x > 0$) is
\n**Sol**. Here, $f(x) = ax + \frac{b}{x} \Rightarrow f'(x) = a - \frac{b}{x^2}$
\nFor maximum and minimum value $f'(x) = 0$
\n∴ $a - \frac{b}{x^2} = 0 \Rightarrow x^2 = \frac{b}{a} \Rightarrow x = \pm \sqrt{\frac{b}{a}}$
\nNow $f''(x) = \frac{2b}{x^3}$
\n $f''(x) = \frac{2b}{x^3}$
\n $f''(x) = \frac{2b}{x^3}$
\n $f''(x) = \frac{2b}{x^3} + \frac{b}{x^2} = \frac{2b}{x^3}$
\n $f''(x) = \frac{2b}{x^3} + \frac{b}{x^2} = \frac{2b}{x^3}$
\n $f'(\frac{b}{a}) = a \cdot \sqrt{\frac{b}{a}} + \frac{b}{\sqrt{a}} = \sqrt{ab} + \sqrt{ab} = 2\sqrt{ab}$
\nHence, minima
\nSo